# All Science Fair Projects

## Science Fair Project Encyclopedia for Schools!

 Search    Browse    Forum  Coach    Links    Editor    Help    Tell-a-Friend    Encyclopedia    Dictionary

# Science Fair Project Encyclopedia

For information on any area of science that interests you,
enter a keyword (eg. scientific method, molecule, cloud, carbohydrate etc.).
Or else, you can start by choosing any of the categories below.

# Bilinear operator

(Redirected from Bilinear)

In mathematics, a bilinear operator is a generalized "multiplication" which satisfies the distributive law.

For a formal definition, given three vector spaces V, W and X over the same base field F, a bilinear operator is a function

B : V × WX

such that for any w in W the map

$v \mapsto B(v, w)$

is a linear operator from V to X, and for any v in V the map

$w \mapsto B(v, w)$

is a linear operator from W to X. In other words, if we hold the first entry of the bilinear operator fixed, while letting the second entry vary, the result is a linear operator, and similarly if we hold the second entry fixed.

If V = W and we have B(v,w)=B(w,v) for all v,w in V, then we say that B is symmetric.

The case where X is F, and we have a bilinear form, is particularly useful (see for example scalar product, inner product and quadratic form).

The definition works without any changes if instead of vector spaces we use modules over a commutative ring R. It also can be easily generalized to n-ary functions, where the proper term is multilinear.

For the case of a non-commutative base ring R and a right module MR and a left module RN, we can define a bilinear operator B : M × NT, where T is a commutative group, such that for any n in N, m |-> B(m, n) is a group homomorphism, and for any m in M, n |-> B(m, n) is a group homomorphism, and which also satisfies

B(mr, n) = B(m, rn)

for all m in M, n in N and r in R.

## Examples

• Matrix multiplication is a bilinear map M(m,n) × M(n,p) → M(m,p).
• If a vector space V over the real numbers R carries an inner product, then the inner product is a bilinear operator V × VR.
• In general, for a vector space V over a field F, a bilinear form on V is the same as a bilinear operator V × VF.
• If V is a vector space with dual space V*, then the application operator, b(f, v) = f(v) is a bilinear operator from V* × V to the base field.
• Let V and W be vector spaces over the same base field F. If f is a member of V* and g a member of W*, then b(v, w) = f(v)g(w) defines a bilinear operator V × WF.
• The cross product in R3 is a bilinear operator R3 × R3R3.
• Let B : V × WX be a bilinear operator, and L : UW be a linear operator, then (v, u) → B(v, Lu) is a bilinear operator on V × U
• The operator B : V × WX where B(v, w) = 0 for all v in V and w in W is bilinear

03-10-2013 05:06:04
Science kits, science lessons, science toys, maths toys, hobby kits, science games and books - these are some of many products that can help give your kid an edge in their science fair projects, and develop a tremendous interest in the study of science. When shopping for a science kit or other supplies, make sure that you carefully review the features and quality of the products. Compare prices by going to several online stores. Read product reviews online or refer to magazines.

Start by looking for your science kit review or science toy review. Compare prices but remember, Price \$ is not everything. Quality does matter.
 Science Fair Coach What do science fair judges look out for? ScienceHound Science Fair Projects for students of all ages
 All Science Fair Projects.com Site All Science Fair Projects Homepage Search | Browse | Links | From-our-Editor | Books | Help | Contact | Privacy | Disclaimer | Copyright Notice