# All Science Fair Projects

## Science Fair Project Encyclopedia for Schools!

 Search    Browse    Forum  Coach    Links    Editor    Help    Tell-a-Friend    Encyclopedia    Dictionary

# Science Fair Project Encyclopedia

For information on any area of science that interests you,
enter a keyword (eg. scientific method, molecule, cloud, carbohydrate etc.).
Or else, you can start by choosing any of the categories below.

# Cauchy principal value

In mathematics, the Cauchy principal value of certain improper integrals is defined as either

• the finite number
$\lim_{\varepsilon\rightarrow 0+} \left(\int_a^{b-\varepsilon} f(x)\,dx+\int_{b+\varepsilon}^c f(x)\,dx\right)$
where b is a point at which the behavior of the function f is such that
$\int_a^b f(x)\,dx=\pm\infty$
for any a < b and
$\int_b^c f(x)\,dx=\mp\infty$
for any c > b (one sign is "+" and the other is "−").

or

• the finite number
$\lim_{a\rightarrow\infty}\int_{-a}^a f(x)\,dx$
where
$\int_{-\infty}^0 f(x)\,dx=\pm\infty$
and
$\int_0^\infty f(x)\,dx=\mp\infty$
(again, one sign is "+" and the other is "−").

In some cases it is necessary to deal simultaneously with singularities both at a finite number b and at infinity. This is usually done by a limit of the form

$\lim_{\varepsilon \rightarrow 0+}\int_{b-1/\varepsilon}^{b-\varepsilon} f(x)\,dx+\int_{b+\varepsilon}^{b+1/\varepsilon}f(x)\,dx.$

## Nomenclature

The Cauchy principal value of a function f can take on several nomenclatures, varying for different authors. These include (but are not limited to): $PV \int f(x)dx$, P, P.V., $\mathcal{P}$, Pv, (CPV) and V.P..

## Examples

Consider the difference in values of two limits:

$\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_a^1\frac{dx}{x}\right)=0,$
$\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_{2a}^1\frac{dx}{x}\right)=-\log_e 2.$

The former is the Cauchy principal value of the otherwise ill-defined expression

$\int_{-1}^1\frac{dx}{x}{\ } \left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).$

Similarly, we have

$\lim_{a\rightarrow\infty}\int_{-a}^a\frac{2x\,dx}{x^2+1}=0,$

but

$\lim_{a\rightarrow\infty}\int_{-2a}^a\frac{2x\,dx}{x^2+1}=-\log_e 4.$

The former is the principal value of the otherwise ill-defined expression

$\int_{-\infty}^\infty\frac{2x\,dx}{x^2+1}{\ } \left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).$

These pathologies do not afflict Lebesgue-integrable functions, that is, functions the integrals of whose absolute values are finite.

03-10-2013 05:06:04