# All Science Fair Projects

## Science Fair Project Encyclopedia for Schools!

 Search    Browse    Forum  Coach    Links    Editor    Help    Tell-a-Friend    Encyclopedia    Dictionary

# Science Fair Project Encyclopedia

For information on any area of science that interests you,
enter a keyword (eg. scientific method, molecule, cloud, carbohydrate etc.).
Or else, you can start by choosing any of the categories below.

# Clenshaw algorithm

In the mathematical subfield of numerical analysis the Clenshaw algorithm is a recursive method to evaluate polynomials in Chebyshev form.

## Polynomial in Chebyshev form

A polynomial of degree N in Chebyshev form is a polynomial p(x) of the form

$p(x) = \sum_{n=0}^{N} a_n T_n(x)$

where Tn is the nth Chebyshev polynomial.

## Clenshaw algorithm

The Clenshaw algorithm can be used to evaluate a polynomial in the Chebyshev form. Given

$p(x) = \sum_{n=0}^{N} a_n T_n(x)$

we define

 $b_{N} \,\!$ $:= a_{N} \,$ $b_{N-1} \,\!$ $:= 2 x b_{N} + a_{N-1} \,$ $b_{N-n} \,\!$ $:= 2 x b_{N-n+1} + a_{N-n} + b_{N-n+2} \,,\; n=2,\ldots,N-1 \,$ $b_{0} \,\!$ $:= x b_{1} + a_{0} - b_{2} \,$

then

$p(x) = \sum_{n=0}^{N} a_n T_n(x) = b_{0}.$