# All Science Fair Projects

## Science Fair Project Encyclopedia for Schools!

 Search    Browse    Forum  Coach    Links    Editor    Help    Tell-a-Friend    Encyclopedia    Dictionary

# Science Fair Project Encyclopedia

For information on any area of science that interests you,
enter a keyword (eg. scientific method, molecule, cloud, carbohydrate etc.).
Or else, you can start by choosing any of the categories below.

# Faltings' theorem

In number theory, the Mordell conjecture stated a basic result regarding the rational number solutions to Diophantine equations. It was eventually proved by Gerd Faltings in 1983, about six decades after the conjecture was made; it is now known as Faltings' theorem.

## Background

Suppose we are given an algebraic curve C defined over the rational numbers (that is, C is defined by polynomials with rational coefficients), and suppose further that C is non-singular (in this case that condition isn't a real restriction). How many rational points (points with rational coefficients) are on C?

The answer depends upon the genus g of the curve. As is common in number theory, there are three cases: g = 0, g = 1, and g greater than 1. The g = 0 case has been understood for a long time; Mordell solved the g = 1 case, and conjectured the result for the g greater than 1 case.

## Statement of results

The complete result is this:

Let C be an non-singular algebraic curve over the rationals of genus g. Then the number of rational points on C may be determined as follows:

## Proofs

Faltings' original proof used the known reduction to a case of the Tate conjecture , and a number of tools from algebraic geometry, including the theory of Néron models . A number of subsequent proofs have since been found, applying rather different methods.

03-10-2013 05:06:04