# All Science Fair Projects

## Science Fair Project Encyclopedia for Schools!

 Search    Browse    Forum  Coach    Links    Editor    Help    Tell-a-Friend    Encyclopedia    Dictionary

# Science Fair Project Encyclopedia

For information on any area of science that interests you,
enter a keyword (eg. scientific method, molecule, cloud, carbohydrate etc.).
Or else, you can start by choosing any of the categories below.

# Improper integral

It is recommended that the reader be familiar with antiderivatives, integrals, and limits.

In calculus, an improper integral is the limit of a definite integral, as an endpoint, or both endpoints, of the interval approaches either a specified real number or ∞ or −∞.

If the function f being integrated from a to c has a discontinuity at c, especially in the form of a vertical asymptote, or if c = ∞, then there may be no more convenient way to compute the integral

$\int_a^c f(x)\,dx\,$

than by finding the limit

$\lim_{b\to c-}\int_a^b f(x)\,dx.\,$

In some cases, the integral from a to c is not even defined, because the integrals of the positive and negative parts of f(xdx from a to c are both infinite, but nonetheless the limit may exist. Such cases are "properly improper" integrals, i.e., their values cannot be defined except as such limits.

The integral

$\int_0^\infty\frac{dx}{1+x^2}$

can be interpreted as

$\lim_{b\rightarrow\infty}\int_0^b\frac{dx}{1+x^2}.$

From the point of view of mathematical analysis it is not necessary to interpret it that way, since it may be interpreted instead as a Lebesgue integral over the set (0, ∞). On the other hand, the use of the limit of definite integrals over finite ranges is clearly useful, if only as a way to calculate actual values.

In contrast,

$\int_0^\infty\frac{\sin(x)}{x}\,dx$

cannot be interpreted as a Lebesgue integral, since

$\int_0^\infty\left|\frac{\sin(x)}{x}\right|\,dx=\infty.$

This is therefore a "properly" improper integral, whose value is given by

$\int_0^\infty\frac{\sin(x)}{x}\,dx=\lim_{b\rightarrow\infty}\int_0^b\frac{\sin(x)}{x}\,dx=\frac{\pi}{2}.$

One can speak of the singularities of an improper integral, meaning those points of the extended real number line at which limits are used.

Such an integral is often written symbolically just like a standard definite integral, perhaps with infinity as a limit of integration. But that conceals the limiting process. By using the more advanced Lebesgue integral, rather than the Riemann integral, one can in some cases bypass this requirement, but if one simply wants to evaluate the limit to a definite answer, that technical fix may not necessarily help. It is more or less essential in the theoretical treatment for the Fourier transform, with pervasive use of integrals over the whole real line.

 Contents

## Infinite bounds of integration

The most basic of improper integrals are integrals such as:

$\int_0^\infty {dx \over x^2+1}.$

As stated above, this need not be defined as an improper integral, since it can be construed as a Lebesgue integral instead. Nonetheless, for purposes of actually computing this integral, it is more convenient to treat it as an improper integral, i.e., to evaluate it when the upper bound of integration is finite and then take the limit as that bound approaches ∞. The antiderivative of the function being integrated is arctan x. The integral is

$\lim_{b\rightarrow\infty}\int_0^b\frac{dx}{1+x^2}=\lim_{b\rightarrow\infty}\arctan b-\arctan 0=\pi/2-0=\pi/2.$

## Vertical asymptotes at bounds of integration

Consider

01 dx / x2/3.

This integral involves a function with a vertical asymptote at x = 0.

One can evaluate this integral by evaluating from b to 1, and then take the limit as b approaches 0. One should note that the antiderivative of the above function is

(3)(x1/3);

which can be evaluated by direct substitution to give the value

3 × (1 − b1/3).

The limit as b → 0 is 3 − 0 = 3

## Cauchy principal values

Consider the difference in values of two limits:

$\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_a^1\frac{dx}{x}\right)=0,$
$\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_{2a}^1\frac{dx}{x}\right)=-\ln 2.$

The former is the Cauchy principal value of the otherwise ill-defined expression

$\int_{-1}^1\frac{dx}{x}{\ } \left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).$

Similarly, we have

$\lim_{a\rightarrow\infty}\int_{-a}^a\frac{2x\,dx}{x^2+1}=0,$

but

$\lim_{a\rightarrow\infty}\int_{-2a}^a\frac{2x\,dx}{x^2+1}=-\ln 4.$

The former is the principal value of the otherwise ill-defined expression

$\int_{-\infty}^\infty\frac{2x\,dx}{x^2+1}{\ } \left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).$

All of the above limits are cases of the indeterminate form ∞ − ∞.

These pathologies do not afflict "Lebesgue-integrable" functions, that is, functions the integrals of whose absolute values are finite.

## External links

03-10-2013 05:06:04
The contents of this article is licensed from www.wikipedia.org under the GNU Free Documentation License. Click here to see the transparent copy and copyright details
Science kits, science lessons, science toys, maths toys, hobby kits, science games and books - these are some of many products that can help give your kid an edge in their science fair projects, and develop a tremendous interest in the study of science. When shopping for a science kit or other supplies, make sure that you carefully review the features and quality of the products. Compare prices by going to several online stores. Read product reviews online or refer to magazines.

Start by looking for your science kit review or science toy review. Compare prices but remember, Price \$ is not everything. Quality does matter.
 Science Fair Coach What do science fair judges look out for? ScienceHound Science Fair Projects for students of all ages
 All Science Fair Projects.com Site All Science Fair Projects Homepage Search | Browse | Links | From-our-Editor | Books | Help | Contact | Privacy | Disclaimer | Copyright Notice